
OSCON 2009
Jonathan Lloyd (majrmovies)

Who am I?

• I have been programming Perl for ~ 4 years

• I work for a small business (~ 30
employees) in Irvine, CA that does e-
commerce and distribution.

• I do primarily web programming with Perl,
mod_perl2, CGI and JavaScript. Including
lots of web service communications like
SOAP, XML, and JSON.

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Disclaimer: I am not these people. I just listened to
these people.

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Disclaimer: I am not these people. I just listened to
these people. And stole some of their materials for this
presentation.

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Prism, Bringing Web Applications to the Desktop - Matthew Gertner

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Perl: The Metrics

• Perl is 21 year’s old.

8

Perl: The Metrics

• Perl is 21 year’s old.

• Perl 5 is 14 years old.

Perl: The Metrics

• Perl is 21 year’s old.

• Perl 5 is 14 years old.

• Larry Wall is 55 years
old.

Perl: The Metrics

• Perl is 21 year’s old.

• Perl 5 is 14 years old.

• Larry Wall is 55 years
old.

• The idea of Perl 6 was
introduced to the
community on October
24th, 2000.

Perl 6: Why?

• We have 20 years of
experience with the
language.

Perl 6: Why?

• We have 20 years of
experience with the
language.

• We have a much better
Larry.

Perl 6: Why?

• We have 20 years of
experience with the
language.

• We have a much better
Larry.

• We have Damian Conway

Perl 6: Why?

• We have 20 years of
experience with the
language.

• We have a much better
Larry.

• We have Damian Conway

• “It’s time to steal all the
good ideas from other
languages.”

Perl 6: Why?

• We have 20 years of
experience with the
language.

• We have a much better
Larry.

• We have Damian Conway

• “It’s time to steal all the
good ideas from other
languages.”

Perl 6: Why?

• We have 20 years of
experience with the
language.

• We have a much better
Larry.

• We have Damian Conway

• “It’s time to steal all the
good ideas from other
languages.”

Perl 6: Seriously?
Comments are inline-able

my $x
This is a comment to the end of the line

= 1;

use v5;

use v6;
my $y #{ Need a better var name!} = 2;

Perl 6: Seriously?
String lists

throw some strings in to an array
my @names = qw(Jonathan David Lloyd);

throw variables and strings -- no more qw!
my @meals = ($breakfast, ‘Lunch’, ‘Dinner’);

use v5;

use v6;
The qw list constructor gets prettier
my @names = < Jonathan David Lloyd >;

Interpolates variables or strings
my @meals = << $breakfast Lunch Dinner >>;

my @names = <<

Jonathan # This is my first name
>>

Perl 6: Seriously?
Everything is an object

say keys %hash;
say values %hash;

join(‘-’, $year, $month, $day);
for (sort keys %hash) { say; }

use v5;

use v6;
%hash.keys.say;

%hash.keys.sort.join(‘ | ‘);
%hash.keys.reverse.join(‘-’).say;

.say for %hash.keys.sort;

Perl 6: Seriously?
Variable declarations

my $variable = “String”;
my $variable = 10;
my $variable = new CGI;

my @array = (‘String’, 10, $object);

use v5;

use v6;
my Str $variable = ‘a scalar’;
my Int $variable = 10;

my Str @array = < Jonathan David Lloyd >;
my Int @array = 1..10;

Perl 6: Seriously?
Junctions

my @odds = qw(1 3 5 7 9);
my @nums = qw(0 1 2 3 4 5 6 7 8 9);

for my $num (@nums) {
if (grep $_ eq $num, @odds) {
say “$num is odd”; ...

use v5;

use v6;
for (@nums) {
say “$_ is odd” if $_ == any (@odds);
say “$_ in even” if $_ == none (@odds);

}

The comparisons are performed in parallel!

Perl 6: Seriously?
1. Strictures and

warnings on by default
2. Comments are inline-

able
3. Big revamp of POD
4. Identifiers
5. String lists
6. Sigils sanitized
7. Everything is an object
8. Variable declarations
9. State variables
10.Constants
11.Lists
12.Generators
13.Pairs
14.Smarter string

interpolations
15.Heredocs fixed
16.Junctions
17.Array indexing

18.Multidimensional
arrays

19.Hash features
20.Data-preserving hash

transformations
21.Operator revamp
22.DWIMier comparisons
23.DWIMier matching
24.Switch statements and

switch loops
25.Defaulting operators
26.IO
27.Sort has been fixed
28.Revamped loops
29.Nested postfix control

statements
30.Error variables
31.Subroutines
32.Named parameters

33.Parameter types and
return types

34.Captures
35.“Slurpy” parameters
36.The MAIN subroutine
37.Classes
38.Inheritance
39.Constructors and

destructors
40.Multiple dispatch
41.Roles
42.Regular Expressions
43.Named regexes
44.Match-time variable

interpolation
45.Named regexes and

grammars

Perl 6: How?

• Download “Rakudo”

• It won’t hurt your current
distribution/system

• Use modules built for
Perl5 that are similar to
Perl6::*

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Prism, Bringing Web Applications to the Desktop - Matthew Gertner

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Distributed Applications with CouchDB

• Document-oriented,
not relational database.

• Schema-Free (JSON)

• RESTful HTTP API

• JavaScript Powered Map/
Reduce Views

• N-Master Replication, Highly
Concurrent, Robust
Storage, Buzz word, Buzz
word, Buzz word.

Distributed Applications with CouchDB

• Documents in the
Real World

• Bills, letters, tax forms ..

• Same type != same structure

• Can be out of date

• No references

• Natural Data Behavior

• Document-oriented,
not relational database.

Distributed Applications with CouchDB

{

"_id": "BCCD12CBB",
"_rev": "3-AB764C",

"type": "person",
"name": "Darth Vader",
"age": 63,
"headware":
["Helmet", "Sombrero"],
"dark_side": true

}

• Schema-Free (JSON)

• Unique ID for each document

• Data structure can change on
a per-document basis

• Limited only by the data
structures available in JSON

Distributed Applications with CouchDB

Create HTTP PUT /db/mydocid
Read HTTP GET /db/mydocid
Update HTTP PUT /db/mydocid
Delete HTTP DELETE /db/mydocid

• RESTful HTTP API

JSON

Distributed Applications with CouchDB

• RESTful HTTP API

Distributed Applications with CouchDB

• Javascript-Powered
Map/Reduce Functions

Map
Documents

Reduce

Distributed Applications with CouchDB

• N-Master Replication, Highly
Concurrent, Robust Storage ..

-d '{
"source":"http://server/db",
"target":"db-replica"

}’

Pull

-d '{
"source":"db-replica",
"target":"http://server/db"

}'

Push

-d '{
"source":"http://server-one/db",
"target":"http://server-two/db"

}'

Remote
scp

JSONJSON

Server

• Terrific Idea

• Leverage Apache for its strength --
distributing documents

• Use client-side JavaScript to manage
and display documents

• Replication across multiple servers, or
being downloadable to offline
applications is very simple

Pros

Cons

Distributed Applications with CouchDB

• Security (HTTP DELETE /db -- Oops!)

• Using Perl would require a
DBD::CouchDB plugin for sanity

• Writing queries/views is not practical in
a small shop

• No direct interface -- runs as a daemon
that is simply killed

• Very JavaScript oriented

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Prism, Bringing Web Applications to the Desktop - Matthew Gertner

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Open Source Language Roundtable
Java: Rod Johnson (SpringSource)
Perl: Jim Brandt (Perl Foundation)
PHP: Laura Thomason (Mozilla)
Python: Alex Martelli (Google)
Ruby: Brian Ford (Engine Yard)

• Most dynamic programming languages are
inherently the same. Don’t hate.

• Perl is the best for shell scripting

• JavaScript is a dynamic language
completely undervalued, but hugely
important in web development (i.e. Google)

• Runs on the client-side

• AJAX has enabled more dynamic communication with
the server

• Frameworks like Prototype, Dojo, Moo Tools, and
jQuery make it easy

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Prism, Bringing Web Applications to the Desktop - Matthew Gertner

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Transparent Sharing of Complex Data with YAML
by Ingy döt Net (Hackers, Inc)

• YAML (YAML Ain't Markup
Language)

• JSON == YAML

• YAML =!~ JSON

• YAML can store objects

• YAML can be streamed

• YAML has implementations in
8 different languages -- more
to come ...

name: ingy
age: old
weight: heavy
I should comment that I also
like pink, but don't tell anybody.
favorite colors:

- red
- green
- blue

- Clark Evans
- Oren Ben-Kiki
- Ingy döt Net
...

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Prism, Bringing Web Applications to the Desktop - Matthew Gertner

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Zen and the Art of Abstraction Maintenance
by Alex Martelli (Google)

• Everything is built
on something.

• You build layers of
abstraction (Perl
modules)

• All layers of
abstraction leak.

• Understand the
layers surrounding
your code.

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Prism, Bringing Web Applications to the Desktop - Matthew Gertner

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Bringing Web Applications to the Desktop
by Matthew Gertner

• The browser wasn’t designed for
running applications -- but it is
being used that way

• HTML5 is furthering this effort

• Offline Operation

• Local Data

• Worker Threads

• Prism allows you to spin a
process (separate from the
browser) and interact with the OS
using JavaScript calls to the API

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Prism, Bringing Web Applications to the Desktop - Matthew Gertner

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Build Your Own Distributed Platform in 3 Hours

• Gearman provides a
distributed application
framework

• Clients - Create jobs to
be run and sends them
to a job server.

• Workers - Register with
a job server and grab
jobs to run.

• Job Server -
Coordinate the
assignment from the
client to the works,
handle restarts.

• “Gearman, like managers,
assign the tasks but do
none of the work.”

Build Your Own Distributed Platform in 3 Hours

• Not everything
needs immediate
attention

• E-mail notifications

• Certain DB updates

• RSS indexing

• Search indexing Image Processing

Build Your Own Distributed Platform in 3 Hours

• Background tasks

• Foreground tasks

• Asynchronous tasks

• No single point of failure
(multiple job servers,
multiple workers)

• Workers can be specific
to certain jobs

Build Your Own Distributed Platform in 3 Hours

• Written in C

• Perl API on CPAN (Gearman::XS)

• Command line tool

• Multi-language - mix client and
workers

• Synchronous and Asynchronous
queues

• Runs as a daemon (gearmand)

• Developing improved monitoring
(statistics, configuration
management, etc.)

• Only accepts a single string / file handle
from Client to Worker

• Failure by worker -- not enough
configuration (would rather it be
function specific)

Pros Cons

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Prism, Bringing Web Applications to the Desktop - Matthew Gertner

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

7 Principles of Better API Design
by Damian Conway

1.Do one thing really well

read a file in to a variable
my $text = do { local (@ARGV, $/) = filename; <> };

use Perl6::Slurp;

my $text = slurp $fh;
my $text2 = slurp ‘filename’;

7 Principles of Better API Design
by Damian Conway

2.Design by coding (work backwards)

regex for floating point integer
my $input =~
/([+-]?(?:\d+[.]?\d*|[.]\d+(?:[eE][+-]?\d+)?)/;

use Regexp::Common;
my $input =~ /($RE{num}{real})/;
my $input2 =~ /($RE{num}{int})/;
my $input3 =~ /($RE{num})/;

7 Principles of Better API Design
by Damian Conway

3.Evolve by Subtraction

use IO::Prompt;
while (prompt “next: “, -bool, -chomped) {
 print “You said ‘$_’\n”;
}

while (prompt “next: “) { # autodetect, autochomp
 print “You said ‘$_’\n”;
}

7 Principles of Better API Design
by Damian Conway

4.Declarative beats imperative

use Getopt::Euclid;

for my $x (0 .. $ARGV{-size}{h} - 1) {
 for my $y (0 .. $ARGV{-size}{w} - 1) {
 do_something_with($x, $y);
 }
}

__END__

= item -s[ize]=<h>x<w>

Specify size of simulation

=for Euclid:
h.type: int > 0
h.default: 24
w.type: int >= 10
w.default: 80

7 Principles of Better API Design
by Damian Conway

5.Preserve the metadata

use Config::Std;

read_config $file_name => my %config;
update %config here
write_config %config => $file_name;

read_config $file_name => my %config;
update %config here
write_config %config;

bash> cd /home/jlloyd
bash> ls
bash> cd docs/
bash> ls
bash> cd modules/
bash> ls
You have typed the commands “cd [path] ls” 3 times, would you
like to create an alias? [y|n]

7 Principles of Better API Design
by Damian Conway

6.Leverage the familiar

use Log::Log4perl;
Log::Log4perl->init($log_config_file);

my $logger = Log::Log4perl->get_logger(__PACKAGE__);

$logger->debug(‘this is a debug message’);
$logger->info(‘this is an info message’);
$logger->warn(‘this is a warning message’);
$logger->error(‘this is an error message’);
$logger->fatal(‘this is a fatal message’);

use Log::StdLog { file => $log_file };
print STDLOG debug => ‘this is a debug message’;
print STDLOG info => ‘this is an info message’;
print STDLOG warn => ‘this is a warning message’;
print STDLOG error => ‘this is an error message’;
print STDLOG fatal => ‘this is a fatal message’;

7 Principles of Better API Design
by Damian Conway

7.The best code is no code at all

my $obj = MyClass->new(‘data’);
print $obj;

MyClass=HASH[0x12a8f2];

my $obj = MyClass->new(‘data’);

use Object::Dumper;
print $obj;

The Presentations
• Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

• Distributed Applications with CouchDB - J Chris Anderson

• Open Source Language Roundtable

• Transparent Sharing of Complex Data with YAML - Ingy döt Net

• Zen and the Art of Abstraction Maintenance - Alex Martelli

• Prism, Bringing Web Applications to the Desktop - Matthew Gertner

• Gearman: Building a Distributed Platform - Eric Day and Brian Aker

• 7 Principles of Better API Design - Damian Conway

• Situation Normal, Everything Must Change - Simon Wardley

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

• This trend can be
mapped and seen in
the market

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

• This trend can be
mapped and seen in
the market (i.e.
CRM)

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

• This trend can be
mapped and seen in
the market (i.e.
CRM)

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

• This trend can be
mapped and seen in
the market (i.e.
CRM)

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

• This trend can be
mapped and seen in
the market (i.e.
CRM)

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

• This trend can be
mapped and seen in
the market (i.e.
CRM)

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

• This trend can be
mapped and seen in
the market (i.e.
CRM)

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

• This trend can be
mapped and seen in
the market (i.e.
CRM)

• Competitive
disadvantage to
companies that fail
to follow the market

Situation Normal, Everything Must Change
by Simon Wardley

• All good innovations
undergo a process of
commoditization
(i.e. Electricity)

• This trend can be
mapped and seen in
the market (i.e.
CRM)

• Competitive
disadvantage to
companies that fail
to follow the market

Situation Normal, Everything Must Change
by Simon Wardley

• Economies of scale

• Pay per use

• Speed to market

• Focus on core

• Price competition

• Not “locked-in”

• Secondary sourcing

Pros

• Management of data/
applications (different
way of thinking/
designing)

• Trust / Security

Cons

Thanks!
Questions?

