OSCON 2009

Jonathan Lloyd (majrmovies)

Who am |?

® | have been programming Perl for ~ 4 years

® | work for a small business (~ 30
employees) in Irvine, CA that does e-
commerce and distribution.

® | do primarily web programming with Perl,
mod_perl2, CGl and JavaScript. Including
lots of web service communications like
SOAP, XML, and |SON.

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway
Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net

Zen and the Art of Abstraction Maintenance - Alex Martelli
Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable
Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

The Presentations

e Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

e Distributed Applications with CouchDB - | Chris Anderson

® Open Source Language Roundtable
e Transparent Sharing of Complex Data with YAML - Ingy dot Net
e Zen and the Art of Abstraction Maintenance - Alex Martelli

e Gearman: Building a Distributed Platform - Eric Day and Brian Aker

e 7 Principles of Better API Design - Damian Conway

e Situation Normal, Everything Must Change - Simon Wardley

Disclaimer: | am not these people. | just listened to
these people.

The Presentations

e Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway
e Distributed Applications with CouchDB - | Chris Anderson

® Open Source Language Roundtable

e Transparent Sharing of Complex Data with YAML - Ingy dot Net

e Zen and the Art of Abstraction Maintenance - Alex Martelli

e Gearman: Building a Distributed Platform - Eric Day and Brian Aker

e 7 Principles of Better API Design - Damian Conway

e Situation Normal, Everything Must Change - Simon Wardley

Disclaimer: | am not these people. | just listened to
these people. And stole some of their materials for this
presentation.

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Prism, Bringing Web Applications to the Desktop - Matthew Gertner

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

Perl: The Metrics

® Perlis 21| year’s old.

O'REILLY"

Lar

vy Wall, Tom Chnasttansent & Ranedal L Schuartz

Programmmg

Perl: The Metrics

® Perlis 21| year’s old.

® Perl 5 is |14 years old.

Perl: The Metrics

® Perlis 21 year’s old.
® Perl5is 14 years old.

® LarryWall is 55 years
old.

Perl: The Metrics

Perl is 21 year’s old.
Perl 5 is 14 years old.

Larry Wall is 55 years
old.

The idea of Perl 6 was
introduced to the

community on October
24th, 2000.

N OT ’ REAL LYo A conmutiee - and look af the mess we ended 1p with

Perl 6: Why!?

® We have 20 years of
experience with the
language.

/bin/perl -s

“echo "$i"|dc";
s/AC)/ /(8=
intf"%08{1}s"

_); $f
§_}#
int
ck

@x=qw/e n d/;if(

< trand(@{[int((rand)*90)]}
e(random(10~§s)));e=8e;n
- (KI2]-1));";s/\s//sg
) {print$x[§i++

(Se&: -
.3y or A
pc";$p+=§y

| WANT YOU
TO LEARN PERL

4

Why

Perl 6

® We have 20 years of

experience with the

language.

® We have a much better

Larry.

Perl 6: Why!?

® We have 20 years of
experience with the
language.

® We have a much better
Larry.

® We have Damian Conway

Perl 6: Why!?
@ python

N\ade With
°

~’ PASCAL

‘ Pattern Analysis, Statistical Modelling and
Computational Learning

We have 20 years of
experience with the
language.

We have a much better
Larry.

We have Damian Conway

“It’s time to steal all the
good ideas from other
languages.”

Perl 6:

We have 20 years of
experience with the
language.

We have a much better
Larry.

We have Damian Conway

“It’s time to steal all the
good ideas from other
languages.”

Perl 6:

We have 20 years of
experience with the
language.

We have a much better
Larry.

We have Damian Conway

“It’s time to steal all the
good ideas from other
languages.”

Perl 6: Seriously?

Comments are inline-able

use vb5;

my $x
This 1s a comment to the end of the line
:1;

use vé;

my $y #{ Need a better var namel} = 2;

Perl 6: Seriously?

String lists

use vb5;

throw some strings in to an array
my @names = gw(Jonathan David Lloyd);

throw variables and strings -- no more gw!
my @meals = ($breakfast, “Lunch’, “Dinner’);

use vé;

The gw list constructor gets prettier
my @names = < Jonathan David Lloyd >;

Interpolates variables or strings
my @meals = << $breakfast Lunch Dinner >>;

my @names = <<

Jonathan # This 1s my first name
>>

Perl 6: Seriously?
Everything is an object

use vb5;

say keys %hash;
say values %hash;

join(“-7, $year, $month, $day);
for (sort keys %hash) { say; }

use vé;
Y%hash.keys.say;

%hash.keys.sort.join(* | “);
%hash.keys.reverse.join(“-").say;

.say for %hash.keys.sort;

Perl 6: Seriously?

Variable declarations

use vJ;
my $variable = “String”’;
my $variable = 10;
my $variable = new CGI;

my @array = (“String”, 10, $object);

use vé;

“a scalar’;
10;

my Str $variable =
my Int $variable =
my Str @array
my Int @array

< Jonathan David Lloyd >;
1..10;

Perl 6: Seriously?

Junctions
use v5;
my @odds = gw(l1 3 5 7 9);
my @nums = gw(0 1 2 3456 7 8 9);

for my $num (@nums) {
1T (grep $ eqg $num, @odds) {
say “$num is odd”’; ...

use vé;
for (@nums) {
say “$ 1s odd” i1t $ == any (@odds);
say “$ in even” if $ == none (@odds);
+

The comparisons are performed in parallel!

Perl 6: Seriously?

|. Strictures and

warnings on by default

Comments are inline-

able

Big revamp of POD

|[dentifiers

String lists

Sigils sanitized

Everything is an object

Variable declarations

9. State variables

|0.Constants

| I.Lists

|2.Generators

| 3.Pairs

| 4.Smarter string
interpolations

| 5.Heredocs fixed

|6.Junctions

| 7.Array indexing

N

©NOUT AW

| 8.Multidimensional
arrays

| 9.Hash features

20.Data-preserving hash
transformations

2|.Operator revamp

22.DWIMier comparisons

23.DWIMier matching

24.Switch statements and
switch loops

25.Defaulting operators

26.10

27.Sort has been fixed

28.Revamped loops

29.Nested postfix control
statements

30.Error variables

31.Subroutines

32.Named parameters

33.Parameter types and
return types
34.Captures
35.“Slurpy” parameters
36.The MAIN subroutine
37.Classes
38.Inheritance
39.Constructors and
destructors
40.Multiple dispatch
41.Roles
42.Regular Expressions
43.Named regexes
44.Match-time variable
interpolation
45.Named regexes and
grammars

Perl 6: How?

The Commuitys Reunste of Perl

® Download “Rakudo”

® [t won’t hurt your current
distribution/system

® Use modules built for
Perl5 that are similar to

Perl6::*

O, REILLY' Allison Randal & Dan Sugalsii

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Prism, Bringing Web Applications to the Desktop - Matthew Gertner

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

Distributed Applications with Ka

¢ Document-oriented,

not relational database. COUCh D B
relax
® Schema-Free (JSON) EJ |
HITP CL’ENT‘Jt
® RESTful HTTP API T |

RLANG- q
VM | ERANG HTTP |
i |

MCD_C ouc

® JavaScript Powered Map/
Reduce Views

IE
|
|

® N-Master Replication, Highly
Concurrent, Robust

Storage, Buzz word, Buzz L

word, Buzz word. (—L‘y
JcU
‘?.fl 1

Distributed Applications with

1™
¢ Document-oriented, ‘:

not relational database. COUCh DB

relax

¢ Documents in the
Real World

® Bills, letters, tax forms ..

® Same type != same structure
® Can be out of date

® No references

® Natural Data Behavior

Distributed Applications with l"a
¢ Schema-Free (JSON) COUChDB

relax

® Unique ID for each document

"_id": "BCCD12CBB",
"“rev": "3-AB764C" ® Data structure can change on

a per-document basis

"type": "person”, o
"name": "Darth Vader", ® Limited only by the data

"age": 63 structures available in J[SON
"headware":

[Helmet", "Sombrero"],
"dark_side": true

Distributed Applications with l"a
e RESTful HTTP API CouchDB

relax
Create HTTP PUT /db/mydocid

Read HTTP GET /db/mydocid " — >
Update HTTP PUT /db/mydocid — PRy
Delete HTTP DELETE /db/mydocid «—

function(doc, req) {
// !json templates.post -

. . =) s - B 2 i s f s Yma Toms 0 [T Gl F (-]
// 1ison blog P pre—— | et s st e - e [,

// lcode helpers.template

// lcode helpers.couchapp Hello World For Real This Time
/7 log(req.headers.Accept);

§ wocks ago

S/ we ()rlly show html Lorem ipsum dolor sit amet, consectotur adipisicing clit, sed do clusmod tempor

incididunt ut labare et dolore magna aliqua. Ut enim ad minkm veniam, quis
return terrplate(templ ates.post, { nostrud exercitation wlliamoo labords nisi ut aliquip ex ea commodo consequat. Duis
title : doc.title, aute irure dolor in reprebenderit in voluptate velit esse cillum dolore cu fugiat
. mualla pariatur. Excepteur sint occaccat cupidatat non proident, sunt in culpa qui
blOQNGIﬂE r blc’g €, B . officia deserunt mollit anim id est aborum.
post : doc.html,

date : doc.created_at,

author : doc.author,
assets : assetPath(),

And a bag of chips

editPostPath : showPath('edit’, doc._id), SRS ey
index : listPath('index','recent-posts',6{descending:true, limit:8}) a With gravata: comments!
1
} by Jusan Disvies, § weeks age

3 SRSLY!
adr

by Jusan Watkins, § weeks ago

n 1AM INTRIGUED BY YOUR IDEAS AND WOULD LIKE TO SUBSCRIBE TO
YOUR NEWSLETTER

by] Chris A, § weeks ago

a @hason feeds e on the wiy

Distributed Applications with Ka

® RESTfulHTTP API
- CouchDB

use JSON; relax

require LWP::UserAgent;

my $ua = LWP::UserAgent->new;
$ua->timeout (10);
Sua->env_proxy;

my $response = $ua->get('http://localhost/db/mydocid"');
1f ($response->is_success) {

my $document = from_json($response->content);
}

else {
die $response->status_line;
}

use DBI;
my $dbh = DBI->connect or die $DBI::errstr;

my $sth = $dbh->prepare('SELECT * FROM db WHERE id = 7');
$sth->execute(1l);

my $item = $sth->fetchrow_hashref;

>
Distributed Applications with : =
e Javascript-Powered ‘

Map/Reduce Functions CouchDB
relax
Documents
Map
fur_lctlon(doc) { _ {"key": "Alice”, "value": 5}
If (doc.user && doc.points) { {"key": "Bob", "value": 7}
/emit(doc.user, doc.points); {"key": "Chris", "value": 3}
Alice”, } {"key": "Joe", "value": 10}
"points" : 5 } } {"key": "Mary", "value": 9}
{"user”: "Mary",
"points” : 9}
{"user": "Bob",| Reduce
"points”: 7} —

function(keys, values, rereduce) {

return sum(values); — A“ceE"' Chnsf 15
| veryone: 34

Distributed Applications with

o

® N-Master Replication, Highly

Concurrent, Robust Storage .. COUCh DB

relax

l | 4
: Pull Server
-d

CO uc h DB "source™:"http://server/db",
"target":"db-replica”

CouchDB Push

l . A "source":"db-replica",
COUCh DB = y "target™:"http://server/db"
CouchDB
Remote

-d {
source":"http:// server-one/db",
""" "http://server-two/db"

ﬁ
g
0Q
[0}
(o2

}l

CouchDB

Distributed Applications with l"a

Pros

® Terrific ldea

® Leverage Apache for its strength --
distributing documents

® Use client-side JavaScript to manage
and display documents

® Replication across multiple servers, or
being downloadable to offline
applications is very simple

CouchDB

relax

Cons

e Security (HTTP DELETE /db -- Oops!)

® Using Perl would require a
DBD::CouchDB plugin for sanity

® Writing queries/views is not practical in
a small shop

® No direct interface -- runs as a daemon
that is simply killed

® Very JavaScript oriented

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Prism, Bringing Web Applications to the Desktop - Matthew Gertner

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

Open Source Language Roundtable
Java: Rod Johnson (SpringSource)
Perl: Jim Brandt (Perl Foundation)
PHP: Laura Thomason (Mozilla)
Python:Alex Martelli (Google)
Ruby: Brian Ford (Engine Yard)

® Most dynamic programming languages are
inherently the same. Don’t hate.

® Perl is the best for shell scripting

e .
N
" = oo
7 2 N
3 " g
7 % N Yok
g .
s
< >
N ", 3
v ",
.

® JavaScript is a dynamic language
completely undervalued, but hugely

important in web development (i.e. Google) Javascrlpt.
The Good Parts

[Runs on the client-side

® AJAX has enabled more dynamic communication with

the server
i : O'REILLY" | "Y&RHOO!. PRESS
® Frameworks like Prototype, Dojo, Moo Tools, and ‘

jQuery make it easy

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Prism, Bringing Web Applications to the Desktop - Matthew Gertner

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

Transparent Sharing of Complex Data with YAML
by Ingy dot Net (Hackers, Inc)

e YAML (YAML Ain't Markup
Language)

e |SON ==YAML

e YAML =!~]SON

® YAML can store objects
® YAML can be streamed

® YAML has implementations in
8 different languages -- more
to come ...

name: ingy
age: old
weight: heavy
I should comment that I also
like pink, but don't tell anybody.
favorite colors:
- red
- green
- blue
- Clark Evans
- Oren Ben-Kiki
- Ingy dot Net

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Prism, Bringing Web Applications to the Desktop - Matthew Gertner

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

Zen and the Art of Abstraction Maintenance
by Alex Martelli (Google)

Most Concerning Threats

[] Everything is bu||t BGP/Route Hijacking DNS Cache Poisoning . nfrastructure "~_=~_'_"T|:-:_5

(unintentional or malicious) DDoS (DNS, VoIP, other)
on Somethlng’ Il Link /Host Flooding Worms i Systems/Infrastructure
Compromise
jentity/Credantial Theft Bots and Botnets

® You build layers of
abstraction (Perl
modules)

® All layers of
abstraction leak.

|
I

|
I

Survey Respondents

® Understand the
layers surrounding
your code.

Figure 4: Most Concerning Threats

Source: Arbor Networks, Inc

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Prism, Bringing Web Applications to the Desktop - Matthew Gertner

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

a5 Bringing Web Applications to the Desktop

Prism

The browser wasn’t designed for
running applications -- but it is
being used that way

HTMLS5 is furthering this effort
e Offline Operation
® |ocal Data

® Worker Threads

Prism allows you to spin a
process (separate from the
browser) and interact with the OS
using JavaScript calls to the API

by Matthew Gertner

v Zimbra: Inbox (5)

About Yahoo! Zimbra Desktop
Check for updates...

Shutdown Service

Keep in Dock
Open at Login
Show in Finder
Hide

Quit

View ~

New mail from: Matthew Gertner

Hi Matt! - What's shaking?

Yahoo! | My Yahoo! | Account Setup | Help

1-50 ob |

Folder Size Received v
10:54 AM mﬂ

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Prism, Bringing Web Applications to the Desktop - Matthew Gertner

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

8Gearman

Build Your Own Distributed Platform in 3 Hours

Gearman provides a
distributed application
framework

Clients - Create jobs to
be run and sends them
to a job server.

Workers - Register with
a job server and grab
jobs to run.

Job Server -
Coordinate the
assignment from the
client to the works,
handle restarts.

“Gearman, like managers,
assign the tasks but do
none of the work.”

Your Client Application Code

Geaman Client API

(C, PHP, Per, MySQL UDF, ..) '
1L
Your Gearman Job Server Provided by
Application geammand Gearmman
Gearman Worker API
-
(C, PHP, Per, ..)
—= Your Worker Application Code

® Not everything
needs immediate
attention
® E-mail notifications
® Certain DB updates
® RSS indexing

® Search indexing

8Gearman

Build Your Own Distributed Platform in 3 Hours

Apache Apache Apache
PHP PHP PHP
Resize Resize Resize

Image Processing

8Gearman

Build Your Own Distributed Platform in 3 Hours

Background tasks
Foreground tasks
Asynchronous tasks

No single point of failure
(multiple job servers,
multiple workers)

Workers can be specific
to certain jobs

Apache Apache Apache
PHP PHP PHP
Gearman Gearman Storage
Job Server Job Server NFS, MogileFS

[N

Resize

Resize

Resize

Worker

Worker

Worker

8Gearman

Build Your Own Distributed Platform in 3 Hours

Pros Cons

® Written in C ® Only accepts a single string / file handle

from Client to Worker
® Perl APl on CPAN (Gearman::XS)

®¢ Command line tool ® Failure by worker -- not enough
configuration (would rather it be
® Multi-language - mix client and function specific)
workers

® Synchronous and Asynchronous
queues

® Runs as a daemon (gearmand)

® Developing improved monitoring
(statistics, configuration
management, etc.)

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Prism, Bringing Web Applications to the Desktop - Matthew Gertner

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

7 Principles of Better API Design
by Damian Conway

|.Do one thing really well

read a file 1In to a variable
my $text = do { local (@ARGV, $/) = filename; <> };

use Perl6::Slurp;

my $text = slurp $fh;
my $text2 = slurp “filename’;

7 Principles of Better API Design
by Damian Conway

2.Design by coding (work backwards)

regex for fTloating point iInteger
my $input =~
/([+-12C2:\d+[-]\d*| [-I\d+(?:[eE][+-]1?\d+)?)/;

use Regexp::Common;

my $input =~ /($RE{num}{real})/;
my $input2 =~ /(SRE{num}{int})/;
my $input3 =~ /($RE{num})/;

7 Principles of Better API Design
by Damian Conway

3.Evolve by Subtraction

use 10::Prompt;

while (prompt “next: *“, -bool, -chomped) {
print “You said “$ ’\n”’;

+

while (prompt “next: “) { # autodetect, autochomp
print “You said “$ ’\n”’;
+

7 Principles of Better API Design
by Damian Conway

4.Declarative beats imperative

use Getopt::Euclid;

for my $x (0 .. $ARGV{-size}{h} - 1) {
for my $y (0 .. $ARGV{-size}{w} - 1) {
do_something with($x, $y);
+

}
END

= 1tem -s[i1ze]=<h>x<w>

Specify size of simulation

=for Euclid:
h.type: int >0
h.default: 24

w.type: int >= 10
w.default: 80

7 Principles of Better API Design
by Damian Conway

5.Preserve the metadata

use Config::Std;

read_config $file_name => my %config;
update %config here
write_config %config => $file_name;

read_config $file_name => my %config;
update %config here
write_config %config;

bash> cd /home/jlloyd

bash> Is

bash> cd docs/

bash> Is

bash> cd modules/

bash> Is

You have typed the commands “cd [path] Is” 3 times, would you
like to create an alias? [y|n]

7 Principles of Better API Design
by Damian Conway

6.Leverage the familiar

use Log::Log4perl;
Log::Log4perl->init($log config file);

my $logger = Log::Log4perl->get logger(__ PACKAGE_);

$logger->debug(“this is a debug message’);
$logger->info(“this is an iInfo message’);

$logger->warn(“this is a warning message’);
$logger->error(“this is an error message’);
$logger->fatal (“this is a fatal message’);

use Log::StdLog { file => $log_Tile };

print STDLOG debug => “this is a debug message’;
print STDLOG info => “this 1s an info message’;
print STDLOG warn => “this Is a warning message’;
print STDLOG error => “this IS an error message’;
print STDLOG fatal => “this is a fatal message’;

7 Principles of Better API Design
by Damian Conway

/. The best code is no code at all

my $obj = MyClass->new(“data’);
print $obj;

MyClass=HASH[0x12a8f2] ;
my $obj = MyClass->new(“data’);

use Object: :Dumper;
print $obj;

The Presentations

Perl 6 Update & Perl 6: What? Why? How? - Larry Wall & Damian Conway

Distributed Applications with CouchDB - | Chris Anderson

Open Source Language Roundtable

Transparent Sharing of Complex Data with YAML - Ingy dot Net
Zen and the Art of Abstraction Maintenance - Alex Martelli

Prism, Bringing Web Applications to the Desktop - Matthew Gertner

Gearman: Building a Distributed Platform - Eric Day and Brian Aker

7 Principles of Better API Design - Damian Conway

Situation Normal, Everything Must Change - Simon Wardley

Situation Normal, Everything Must Change
by Simon Wardley

® All good innovations
undergo a process of

commoditization CommoOodiTiSATION e ———

Services

{commodity]

Situation Normal, Everything Must Change
by Simon Wardley

® All good innovations
undergo a process of
commoditization
(i.e. Electricity)

Situation Normal, Everything Must Change
by Simon Wardley

® All good innovations
undergo a process of
commoditization
(i.e. Electricity)

® This trend can be
mapped and seen in
the market

certainty

Situation Normal, Everything Must Change

by Simon Wardley

All good innovations
undergo a process of
commoditization

(i.e. Electricity)

This trend can be

mapped and seen in - Services
the market (i.e.
CRM)

:
B
-

/ Products

P
.

Bespoke
Innovation

Situation Normal, Everything Must Change
by Simon Wardley

® All good innovations
undergo a process of
commoditization
(i.e. Electricity)

® This trend can be
mapped and seen in

the market (i.e.
CRM)

_.___”Early lists, 1980.

certainty

Situation Normal, Everything Must Change
by Simon Wardley

® All good innovations
undergo a process of
commoditization
(i.e. Electricity)

® This trend can be
mapped and seen in

the market (i.e.
CRM)

/DB marketing, mid 805.

./‘/‘

certainty

Situation Normal, Everything Must Change
by Simon Wardley

® All good innovations
undergo a process of
commoditization
(i.e. Electricity)

® This trend can be
mapped and seen in ¥
the market (i.e. £ CRM Products,
CRM) 2 19905

certainty

Situation Normal, Everything Must Change
by Simon Wardley

® All good innovations
undergo a process of
commoditization ——

(i.e. Electricity) * Salesforce

® This trend can be
mapped and seen in

the market (i.e.
CRM)

Situation Normal, Everything Must Change

by Simon Wardley

All good innovations
undergo a process of
commoditization

(i.e. Electricity)

This trend can be

mapped and seen in - Services
the market (i.e.
CRM)

:
B
-

/ Products

P
.

Bespoke
Innovation

Situation Normal, Everything Must Change
by Simon Wardley

® All good innovations
undergo a process of
commoditization
(i.e. Electricity)

® This trend can be
mapped and seen in

the market (i.e.
CRM)

® Competitive
disadvantage to
companies that fail
to follow the market

certainty

Situation Normal, Everything Must Change
by Simon Wardley

® All good innovations
undergo a process of
commoditization
(i.e. Electricity)

® This trend can be
mapped and seen in

the market (i.e.
CRM)

® Competitive
disadvantage to
companies that fail
to follow the market

Constant

/i pressure

Situation Normal, Everything Must Change

Pros

® Economies of scale
® Pay per use

® Speed to market

® Focus on core

® Price competition
® Not “locked-in”

® Secondary sourcing

Cons

® Management of data/
applications (different
way of thinking/
designing)

® Trust / Security

by Simon Wardley

Software as a Service SalesForce
: Google App
Platform as a Service Engine
Infrastructure as a Service Amazon EC2

Networl
slutions €)The Plane

1e Global IT Hosting Leader

Go D%yz% rackspac (")

IT HOSTING

Make a .com
name with us!™

Thanks!

Questions!?

